Using Collocation Segmentation to Augment the Phrase Table

نویسندگان

  • Carlos A. Henríquez Q.
  • Marta R. Costa-Jussà
  • Vidas Daudaravicius
  • Rafael E. Banchs
  • José B. Mariño
چکیده

This paper describes the 2010 phrase-based statistical machine translation system developed at the TALP Research Center of the UPC in cooperation with BMIC and VMU. In phrase-based SMT, the phrase table is the main tool in translation. It is created extracting phrases from an aligned parallel corpus and then computing translation model scores with them. Performing a collocation segmentation over the source and target corpus before the alignment causes that di erent and larger phrases are extracted from the same original documents. We performed this segmentation and used the union of this phrase set with the phrase set extracted from the nonsegmented corpus to compute the phrase table. We present the con gurations considered and also report results obtained with internal and o cial test sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using collocation segmentation to extract translation units in a phrase-based statistical machine translation system

This report evaluates the impact of using a novel collocation segmentation method for phrase extraction in the standard phrase-based statistical machine translation approach. The collocation segmentation technique is implemented simultaneously in the source and target side. The resulting collocation segmentation is used to extract translation units. Experiments are reported in the Spanish-toEng...

متن کامل

Phrase Segmentation Model using Collocation and Translational Entropy

In this paper, we propose a phrase segmentation model for the phrase-based statistical machine translation. We observed that good translation candidates generated by a conventional phrase-based SMT decoder have lexical cohesion and show more uniform translation for each phrase segment. Based on the observation, we propose a novel phrase segmentation model using collocation between two adjacent ...

متن کامل

Using collocation segmentation to extract translation units in a phrase-based statistical machine translation system Implementación de una segmentación estad́ıstica complementaria para extraer unidades de traducción en un sistema de traducción estad́ıstico basado en frases

This report evaluates the impact of using a novel collocation segmentation method for phrase extraction in the standard phrase-based statistical machine translation approach. The collocation segmentation technique is implemented simultaneously in the source and target side. The resulting collocation segmentation is used to extract translation units. Experiments are reported in the Spanish-toEng...

متن کامل

Integration of statistical collocation segmentations in a phrase-based statistical machine translation system

This study evaluates the impact of integrating two different collocation segmentations methods in a standard phrase-based statistical machine translation approach. The collocation segmentation techniques are implemented simultaneously in the source and target side. Each resulting collocation segmentation is used to extract translation units. Experiments are reported in the English-to-Spanish Bi...

متن کامل

A Bayesian model of bilingual segmentation for transliteration

In this paper we propose a novel Bayesian model for unsupervised bilingual character sequence segmentation of corpora for transliteration. The system is based on a Dirichlet process model trained using Bayesian inference through blocked Gibbs sampling implemented using an efficient forward filtering/backward sampling dynamic programming algorithm. The Bayesian approach is able to overcome the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010